If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4032=16t^2
We move all terms to the left:
4032-(16t^2)=0
a = -16; b = 0; c = +4032;
Δ = b2-4ac
Δ = 02-4·(-16)·4032
Δ = 258048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{258048}=\sqrt{36864*7}=\sqrt{36864}*\sqrt{7}=192\sqrt{7}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-192\sqrt{7}}{2*-16}=\frac{0-192\sqrt{7}}{-32} =-\frac{192\sqrt{7}}{-32} =-\frac{6\sqrt{7}}{-1} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+192\sqrt{7}}{2*-16}=\frac{0+192\sqrt{7}}{-32} =\frac{192\sqrt{7}}{-32} =\frac{6\sqrt{7}}{-1} $
| 28=8/x^2 | | -14p+9=-5 | | -5-1x=2x-(4x+6) | | -2(8u-8)+3u=3(u+8) | | 3(x+2)=2(5x-4) | | -9=h+3 | | 4(3x+7)=5x+42 | | 1x^2+4x+4=0 | | 5(1p+3)+9=3(1p+-2)+6 | | 5.2(6x-5)=52 | | -5=-6+k | | x/5=2. | | -3(2x-5)=4x-25 | | b/8+6=4 | | (6x+200)/(x+25)=7.5 | | 7)6=3(x+2) | | 11/8y+y=190 | | 7(y-2)=-35 | | 5-(x+2)-10=13 | | 3(1d+-8)=3d | | =7−y2−35 | | 0=-16t^2+34t-20 | | 196=-2x-4(5x+6) | | 32x+48=25x+13 | | (2w2–4w–7)–(7w2+2w–4)=1 | | 15x+2x-9x=-41 | | 4(x-3)=7x-3x+3 | | 6x-4(-2x-1)=-2+18(x+21) | | -6b=-30 | | 5.1-4.2(r+1)=-6r-20.1+6r | | 6x-4(-2x-1)=-2 | | 0.7p+406=7.3-0.2p |